feat(#71): Mejorar script de creación de órdenes de laboratorio - 2 órdenes por paciente con manejo de errores

This commit is contained in:
Luis Ernesto Portillo Zaldivar 2025-07-21 16:09:39 -06:00
parent 1ff44b1654
commit 53eada8432

View File

@ -113,35 +113,79 @@ def process_order_tests(env, order):
product_tmpl = test.product_id.product_tmpl_id product_tmpl = test.product_id.product_tmpl_id
for param_link in product_tmpl.parameter_ids: for param_link in product_tmpl.parameter_ids:
param = param_link.parameter_id param = param_link.parameter_id
result = env['lims.result'].create({
# Prepare result data with values
result_data = {
'test_id': test.id, 'test_id': test.id,
'parameter_id': param.id, 'parameter_id': param.id,
}) }
# Immediately set a value to avoid validation errors
if param.value_type == 'numeric': # Set value based on parameter type
# Generar valor que a veces esté fuera de rango try:
if random.random() < 0.3: # 30% de valores críticos if param.value_type == 'numeric':
# Obtener rangos normales del parámetro # Generar valor que a veces esté fuera de rango
normal_min = param_link.normal_min if hasattr(param_link, 'normal_min') and param_link.normal_min else 10 if random.random() < 0.3: # 30% de valores críticos
normal_max = param_link.normal_max if hasattr(param_link, 'normal_max') and param_link.normal_max else 100 # Obtener rangos normales del parámetro
normal_min = param_link.normal_min if hasattr(param_link, 'normal_min') and param_link.normal_min else 10
# Decidir si será alto o bajo normal_max = param_link.normal_max if hasattr(param_link, 'normal_max') and param_link.normal_max else 100
if random.random() < 0.5:
# Valor alto # Decidir si será alto o bajo
value = round(random.uniform(normal_max * 1.2, normal_max * 1.5), 2) if random.random() < 0.5:
# Valor alto
value = round(random.uniform(normal_max * 1.2, normal_max * 1.5), 2)
else:
# Valor bajo
value = round(random.uniform(normal_min * 0.5, normal_min * 0.8), 2)
result_data['value_numeric'] = value
else: else:
# Valor bajo result_data['value_numeric'] = 50.0
value = round(random.uniform(normal_min * 0.5, normal_min * 0.8), 2) elif param.value_type == 'text':
result.value_numeric = value # Handle different text parameters appropriately
else: param_lower = param.name.lower()
result.value_numeric = 50.0 if 'cultivo' in param_lower:
elif param.value_type == 'text': result_data['value_text'] = "No se observa crecimiento bacteriano"
result.value_text = "Normal" elif 'observacion' in param_lower:
elif param.value_type == 'boolean': result_data['value_text'] = "Sin observaciones particulares"
result.value_boolean = False elif 'color' in param_lower:
elif param.value_type == 'selection' and param.selection_options: result_data['value_text'] = "Amarillo claro"
options = param.selection_options.split(',') elif 'aspecto' in param_lower:
result.value_selection = options[0].strip() result_data['value_text'] = "Transparente"
elif 'olor' in param_lower:
result_data['value_text'] = "Sui generis"
else:
result_data['value_text'] = "Normal"
elif param.value_type == 'boolean':
result_data['value_boolean'] = False
elif param.value_type == 'selection':
if param.selection_values:
options = param.selection_values.split(',')
# For pregnancy tests, randomly assign positive/negative
if 'beta-hcg' in param.name.lower() or 'embarazo' in param.name.lower():
# 30% chance of positive for pregnant patients, 5% for others
is_positive = random.random() < (0.3 if hasattr(test, 'patient_id') and test.patient_id.is_pregnant else 0.05)
result_data['value_selection'] = 'Positivo' if is_positive else 'Negativo'
else:
result_data['value_selection'] = options[0].strip()
else:
# No selection values defined, use default
if 'embarazo' in param.name.lower():
result_data['value_selection'] = 'Negativo'
else:
result_data['value_selection'] = 'Normal'
except Exception as e:
print(f" - Error preparing value for parameter {param.name}: {str(e)}")
# Set a default value to avoid validation errors
if param.value_type == 'numeric':
result_data['value_numeric'] = 50.0
elif param.value_type == 'text':
result_data['value_text'] = "Pendiente"
elif param.value_type == 'boolean':
result_data['value_boolean'] = False
elif param.value_type == 'selection':
result_data['value_selection'] = "Normal"
# Create result with values
result = env['lims.result'].create(result_data)
print(f" - Created {len(product_tmpl.parameter_ids)} result fields") print(f" - Created {len(product_tmpl.parameter_ids)} result fields")
# Evaluar resultados críticos y agregar notas # Evaluar resultados críticos y agregar notas
@ -209,65 +253,123 @@ def create_lab_requests(cr):
except Exception: except Exception:
pass pass
try: # Get all available analysis products
# Get patients and doctors - using search instead of ref to be more robust all_analyses = env['product.template'].search([('is_analysis', '=', True)])
patient1 = env['res.partner'].search([('patient_identifier', '=', 'P-A87B01'), ('is_patient', '=', True)], limit=1)
patient2 = env['res.partner'].search([('patient_identifier', '=', 'P-C45D02'), ('is_patient', '=', True)], limit=1) # Find or create pregnancy test
doctor1 = env['res.partner'].search([('doctor_license', '=', 'L-98765'), ('is_doctor', '=', True)], limit=1) pregnancy_test = env['product.template'].search([('name', '=', 'Prueba de Embarazo'), ('is_analysis', '=', True)], limit=1)
if not pregnancy_test:
# Create pregnancy test if it doesn't exist
pregnancy_test = env['product.template'].create({
'name': 'Prueba de Embarazo',
'is_analysis': True,
'analysis_type': 'immunology',
'list_price': 15.00,
'standard_price': 8.00,
'type': 'service',
'categ_id': env.ref('lims_management.lims_category_immunology').id if env.ref('lims_management.lims_category_immunology', False) else env['product.category'].search([], limit=1).id,
})
print("Created Pregnancy Test product")
if not patient1: # Create parameter for pregnancy test
print("Warning: Patient 1 not found, skipping lab requests creation") preg_param = env['lims.analysis.parameter'].search([('name', '=', 'Beta-hCG')], limit=1)
return if not preg_param:
preg_param = env['lims.analysis.parameter'].create({
# Get analysis products - using search instead of ref 'name': 'Beta-hCG',
hemograma = env['product.template'].search([('name', '=', 'Hemograma Completo'), ('is_analysis', '=', True)], limit=1) 'code': 'BHCG',
perfil_lipidico = env['product.template'].search([('name', '=', 'Perfil Lipídico'), ('is_analysis', '=', True)], limit=1) 'value_type': 'selection',
glucosa = env['product.template'].search([('name', '=', 'Glucosa en Sangre'), ('is_analysis', '=', True)], limit=1) 'selection_values': 'Positivo,Negativo,Indeterminado',
urocultivo = env['product.template'].search([('name', '=', 'Urocultivo'), ('is_analysis', '=', True)], limit=1) 'description': 'Hormona gonadotropina coriónica humana beta'
})
# Create Lab Request 1 - Multiple analyses with same sample type # Link parameter to pregnancy test
if patient1 and hemograma and perfil_lipidico: env['product.template.parameter'].create({
order1 = env['sale.order'].create({ 'product_tmpl_id': pregnancy_test.id,
'partner_id': patient1.id, 'parameter_id': preg_param.id,
'doctor_id': doctor1.id if doctor1 else False, 'sequence': 10,
'is_lab_request': True, 'required': True
'order_line': [ })
(0, 0, {'product_id': hemograma.product_variant_id.id, 'product_uom_qty': 1}),
(0, 0, {'product_id': perfil_lipidico.product_variant_id.id, 'product_uom_qty': 1}) # Separate analyses for different purposes
] routine_analyses = [a for a in all_analyses if a.name not in ['Prueba de Embarazo']]
})
print(f"Created Lab Order 1: {order1.name}") # Get all patients
all_patients = env['res.partner'].search([('is_patient', '=', True)], order='id')
# Confirm the order to test automatic sample generation
order1.action_confirm() # Get available doctors
print(f"Confirmed Lab Order 1. Generated samples: {len(order1.generated_sample_ids)}") doctors = env['res.partner'].search([('is_doctor', '=', True)])
# Process tests for order1 print(f"\n=== Starting creation of lab orders for {len(all_patients)} patients ===")
process_order_tests(env, order1) print(f"Available analyses: {len(all_analyses)}")
print(f"Available doctors: {len(doctors)}")
# Create Lab Request 2 - Different sample types
if patient2 and glucosa and urocultivo: orders_created = 0
order2 = env['sale.order'].create({ failed_orders = []
'partner_id': patient2.id,
'is_lab_request': True, for idx, patient in enumerate(all_patients):
'order_line': [ print(f"\n--- Processing patient {idx+1}/{len(all_patients)}: {patient.name} ---")
(0, 0, {'product_id': glucosa.product_variant_id.id, 'product_uom_qty': 1}),
(0, 0, {'product_id': urocultivo.product_variant_id.id, 'product_uom_qty': 1}) # Randomly assign a doctor
] doctor = random.choice(doctors) if doctors else False
})
print(f"Created Lab Order 2: {order2.name}") # Create 2 orders per patient
for order_num in range(1, 3):
# Confirm to test automatic sample generation with different types try:
order2.action_confirm() order_lines = []
print(f"Confirmed Lab Order 2. Generated samples: {len(order2.generated_sample_ids)}")
# For pregnant patients, include pregnancy test in one of the orders
# Process tests for order2 if patient.is_pregnant and order_num == 1:
process_order_tests(env, order2) order_lines.append((0, 0, {
'product_id': pregnancy_test.product_variant_id.id,
except Exception as e: 'product_uom_qty': 1
print(f"Error creating lab requests: {str(e)}") }))
import traceback print(f" - Added pregnancy test for pregnant patient")
traceback.print_exc()
# Select random analyses (minimum 2 per order)
num_analyses = random.randint(2, 4)
selected_analyses = random.sample(routine_analyses, min(num_analyses, len(routine_analyses)))
for analysis in selected_analyses:
order_lines.append((0, 0, {
'product_id': analysis.product_variant_id.id,
'product_uom_qty': 1
}))
# Create the order
order = env['sale.order'].create({
'partner_id': patient.id,
'doctor_id': doctor.id if doctor else False,
'is_lab_request': True,
'order_line': order_lines
})
print(f" Order {order_num}: Created {order.name} with {len(order_lines)} analyses")
# Confirm the order
order.action_confirm()
print(f" Order {order_num}: Confirmed. Generated samples: {len(order.generated_sample_ids)}")
# Process tests
process_order_tests(env, order)
orders_created += 1
except Exception as e:
error_msg = f"Patient: {patient.name}, Order {order_num}, Error: {str(e)}"
failed_orders.append(error_msg)
print(f" ERROR creating order {order_num} for {patient.name}: {str(e)}")
import traceback
traceback.print_exc()
# Final summary
print("\n=== SUMMARY ===")
print(f"Total orders created: {orders_created}")
print(f"Failed orders: {len(failed_orders)}")
if failed_orders:
print("\n=== FAILED ORDERS ===")
for idx, error in enumerate(failed_orders, 1):
print(f"{idx}. {error}")
if __name__ == '__main__': if __name__ == '__main__':
db_name = 'lims_demo' db_name = 'lims_demo'