feat(#32): Add automatic sample generation - Task 1 completed

- Added generated_sample_ids field to sale.order model
- Override action_confirm() to intercept lab order confirmation
- Implemented _generate_lab_samples() main logic method
- Implemented _group_analyses_by_sample_type() for grouping
- Implemented _create_sample_for_group() for sample creation
- Added necessary fields to stock.lot model (doctor_id, origin, volume_ml, analysis_names)
- Updated state field to include 'pending_collection' state
- Added proper error handling and user notifications via message_post
- Successful test with ephemeral instance restart
This commit is contained in:
Luis Ernesto Portillo Zaldivar 2025-07-14 22:29:29 -06:00
parent cb0cabf2d2
commit a9ed1a23bd
6 changed files with 207 additions and 1 deletions

View File

@ -1,5 +1,9 @@
# -*- coding: utf-8 -*-
from odoo import models, fields
from odoo import models, fields, api, _
from odoo.exceptions import UserError
import logging
_logger = logging.getLogger(__name__)
class SaleOrder(models.Model):
_inherit = 'sale.order'
@ -17,3 +21,145 @@ class SaleOrder(models.Model):
domain="[('is_doctor', '=', True)]",
help="The doctor who referred the patient for this laboratory request."
)
generated_sample_ids = fields.Many2many(
'stock.lot',
'sale_order_stock_lot_rel',
'order_id',
'lot_id',
string='Muestras Generadas',
domain="[('is_lab_sample', '=', True)]",
readonly=True,
help="Laboratory samples automatically generated when this order was confirmed"
)
def action_confirm(self):
"""Override to generate laboratory samples automatically"""
res = super(SaleOrder, self).action_confirm()
# Generate samples only for laboratory requests
for order in self.filtered('is_lab_request'):
try:
order._generate_lab_samples()
except Exception as e:
_logger.error(f"Error generating samples for order {order.name}: {str(e)}")
# Continue with order confirmation even if sample generation fails
# But notify the user
order.message_post(
body=_("Error al generar muestras automáticamente: %s. "
"Por favor, genere las muestras manualmente.") % str(e),
message_type='notification'
)
return res
def _generate_lab_samples(self):
"""Generate laboratory samples based on the analyses in the order"""
self.ensure_one()
_logger.info(f"Generating laboratory samples for order {self.name}")
# Group analyses by sample type
sample_groups = self._group_analyses_by_sample_type()
if not sample_groups:
_logger.warning(f"No analyses with sample types found in order {self.name}")
return
# Create samples for each group
created_samples = self.env['stock.lot']
for sample_type_id, group_data in sample_groups.items():
sample = self._create_sample_for_group(group_data)
if sample:
created_samples |= sample
# Link created samples to the order
if created_samples:
self.generated_sample_ids = [(6, 0, created_samples.ids)]
_logger.info(f"Created {len(created_samples)} samples for order {self.name}")
# Post message with created samples
sample_list = "<ul>"
for sample in created_samples:
sample_list += f"<li>{sample.name} - {sample.sample_type_product_id.name}</li>"
sample_list += "</ul>"
self.message_post(
body=_("Muestras generadas automáticamente: %s") % sample_list,
message_type='notification'
)
def _group_analyses_by_sample_type(self):
"""Group order lines by required sample type"""
groups = {}
for line in self.order_line:
product = line.product_id
# Skip non-analysis products
if not product.is_analysis:
continue
# Check if analysis has a required sample type
if not product.required_sample_type_id:
_logger.warning(
f"Analysis {product.name} has no required sample type defined"
)
# Post warning message
self.message_post(
body=_("Advertencia: El análisis '%s' no tiene tipo de muestra definido") % product.name,
message_type='notification'
)
continue
sample_type = product.required_sample_type_id
# Initialize group if not exists
if sample_type.id not in groups:
groups[sample_type.id] = {
'sample_type': sample_type,
'lines': [],
'total_volume': 0.0,
'analyses': []
}
# Add line to group
groups[sample_type.id]['lines'].append(line)
groups[sample_type.id]['analyses'].append(product.name)
groups[sample_type.id]['total_volume'] += (product.sample_volume_ml or 0.0) * line.product_uom_qty
return groups
def _create_sample_for_group(self, group_data):
"""Create a single sample for a group of analyses"""
try:
sample_type = group_data['sample_type']
# Prepare sample values
vals = {
'product_id': sample_type.product_variant_id.id,
'patient_id': self.partner_id.id,
'doctor_id': self.doctor_id.id if self.doctor_id else False,
'origin': self.name,
'sample_type_product_id': sample_type.id,
'volume_ml': group_data['total_volume'],
'is_lab_sample': True,
'state': 'pending_collection',
'analysis_names': ', '.join(group_data['analyses'][:3]) +
('...' if len(group_data['analyses']) > 3 else '')
}
# Create the sample
sample = self.env['stock.lot'].create(vals)
_logger.info(
f"Created sample {sample.name} for {len(group_data['analyses'])} analyses"
)
return sample
except Exception as e:
_logger.error(f"Error creating sample: {str(e)}")
raise UserError(
_("Error al crear muestra para %s: %s") % (sample_type.name, str(e))
)

View File

@ -40,8 +40,31 @@ class StockLot(models.Model):
string='Collected by',
default=lambda self: self.env.user
)
doctor_id = fields.Many2one(
'res.partner',
string='Médico Referente',
domain="[('is_doctor', '=', True)]",
help="Médico que ordenó los análisis"
)
origin = fields.Char(
string='Origen',
help="Referencia a la orden de laboratorio que generó esta muestra"
)
volume_ml = fields.Float(
string='Volumen (ml)',
help="Volumen total de muestra requerido"
)
analysis_names = fields.Char(
string='Análisis',
help="Lista de análisis que se realizarán con esta muestra"
)
state = fields.Selection([
('pending_collection', 'Pendiente de Recolección'),
('collected', 'Recolectada'),
('received', 'Recibida en Laboratorio'),
('in_process', 'En Proceso'),

View File

@ -0,0 +1,37 @@
## Resumen
Este Pull Request implementa la relación entre análisis y tipos de muestra (Issue #44), estableciendo la base necesaria para la automatización de generación de muestras (Issue #32).
## Cambios principales
### 1. Modelos
- **ProductTemplate**: Añadidos campos `required_sample_type_id` y `sample_volume_ml` para definir requisitos de muestra en análisis
- **StockLot**: Añadido campo `sample_type_product_id` manteniendo compatibilidad con `container_type`
### 2. Vistas
- Actualización de vistas de análisis para mostrar campos de tipo de muestra
- Actualización de vistas de stock.lot con nuevo campo de tipo de muestra
- Visualización de relaciones test-muestra en listas y formularios
### 3. Datos
- Creación de 10 tipos de muestra comunes (Tubo Suero, EDTA, Orina, etc.)
- Actualización de análisis demo con tipos de muestra requeridos
- Actualización de muestras demo con referencias a productos tipo muestra
### 4. Herramientas
- Script de verificación `verify_sample_relationships.py` para validar la implementación
- Documentación completa en `ISSUE44_IMPLEMENTATION.md`
## Compatibilidad
- Mantiene compatibilidad total con el campo legacy `container_type`
- Sincronización automática entre campos viejos y nuevos
- Sin ruptura de funcionalidad existente
## Pruebas
Todas las tareas fueron probadas individualmente con reinicio de instancia efímera y verificación de logs sin errores.
## Próximos pasos
Con esta base implementada, el Issue #32 puede proceder con la automatización de generación de muestras al confirmar órdenes de laboratorio.